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Background: Recent findings on T cells and dendritic cells have elucidated 
principles that can be used for a bottom-up approach to engineering artificial 
antigen presentation on synthetic substrates. Objective/methods: To compare 
the latest artificial antigen-presenting cell (aAPC) technology, focussing on 
acellular systems because they offer advantages such as easy tunability and 
rapid point-of-care application compared with cellular systems. We review 
acellular aAPC performance and discuss their promise for clinical applications. 
Results/conclusion: Acellular aAPCs are a powerful alternative to natural-
cell-based therapies, offering flexibility and modularity for incorporation 
oSf a variety of stimuli, hence increasing precision. Current technologies 
should adapt physiologically important signals within safe materials to 
more closely approximate their cellular counterparts. These constructs could 
be administered parenterally as APC replacements for active vaccines or 
used ex vivo for adoptive immunotherapy.
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In contrast to conventional therapies such as radiation and chemotherapy,  
immunotherapy is highly specific on a cellular level and may achieve high potency 
while avoiding deleterious side effects. While passive immunotherapy with mono-
clonal antibodies has led to effective anti-tumor responses in a number of clinical 
settings  [1,2], active immunotherapy, which aims to prime in vivo cellular responses 
against infectious disease or cancer antigens, has proven more challenging. Efficient 
stimulation of effector immune cells such as T cells is an important determinant 
of the success of active immunization protocols, and T cells depend on interactions 
with antigen-presenting cells (APCs) displaying those appropriate antigens. 
Immunotherapeutic responses can be elicited in vivo by active vaccination with 
antigens or by administration of antigen-specific T cells expanded ex vivo (adoptive 
immunotherapy). In both forms of therapy a desirable outcome is to induce 
potent cellular and humoral immune responses specific to the antigens of interest. 
Consistent and objective clinical response rates have yet to be universally achieved 
with cellular-based immunotherapies against general antigens. However, a number 
of clinical studies have demonstrated that this approach can lead to anti-tumor 
responses with meaningful clinical benefits  [3-5].

Some of the most encouraging clinical data regarding active immunotherapy 
against cancer comes from studies employing adoptive transfer of tumor-reactive 
T cells  [6,7]. This process depends on efficient antigen presentation for proper 

1.  Introduction

2.  Which signals are important 
for presentation on an artificial 
substrate?

3.  Particulate-based substrates and 
T cell signaling

4.  Therapeutic and clinical use of 
aAPCs

5.  Expert opinion



activation, expansion and differentiation of tumor-avid, 
antigen-specific T cells ex vivo followed by re-infusion into 
the host  [8]. Natural antigen-presenting cells such as dendritic 
cells (DC) initiate the most potent immune responses, and 
in the last decade preventative and therapeutic applications 
have established proof of principle for their clinical use  [9]. 
The use of DC for ex vivo or in vivo stimulation of an 
antigen-specific immune response in clinical applications is, 
however, still hindered by issues regarding fundamental 
understanding of the biology and roles of different DC  
subsets in immunotherapy, optimal approaches to gener-
ating the most effective DC subsets eliciting anti-tumor 
responses, and how the tumor microenvironment regulates 
DC-lymphocyte interactions  [10-12]. Further research will 
undoubtedly establish firm principles for optimizing DC 
generation for cancer vaccines. However, there are also logistical 
issues involving the quality and quantity of isolated cells and 
the labor, time and cost associated with their isolation  [13]. 
Furthermore, it is often difficult to obtain functionally fit 
DCs in large numbers from patients with advanced disease, 
and when DCs are isolated in sufficient number, their 
ex vivo culture is time consuming and expensive, requiring 
specialized equipment and techniques and often producing 
variability in quality of the resulting cells. Autologous DC 
application in clinical settings becomes almost personalized 
medicine. Custom isolation must be performed for individual 
patients because T cell restriction demands the use of auto-
logous DCs (DCs isolated from the same patient) to prevent 
rejection of the cell product, and this limits the generalization of 
adoptive T cell therapy. Numerous reports have used autologous 
DCs or engineered cellular APCs for T cell stimulation, 
and these studies have been reviewed elsewhere  [9-12,14-16].

Artificial APCs were invented to overcome some of the 
aforementioned challenges involving the use of autologous 
DCs. Cell-based APC systems that use fibroblasts or insect 
cells transfected with ligands offer a physiological interface 
and antigen processing capabilities but carry the risks of 
infection and tumorigenicity  [14,16]. The labor associated 
with construction and culture of different cell-based APC 
systems and issues related to large-scale manufacturing, 
transport and storage have detracted from their wide-scale 
use. Furthermore, it is desirable for APCs to be easily 
adapted to different antigens and to be able to modulate the 
density of antigen presentation at point-of-care settings for 
optimal use and ease of standardization.

For these reasons APCs based on acellular systems (aAPCs) 
have been proposed and tested in the expansion of T cells 
for the treatment of a variety of disease states  [14,16]. Acellular 
aAPCs overcome the limitations of cell-based systems by 
presenting T cell stimuli on inert, cell-compatible, biocom-
patible platforms. This represents an off-the-shelf technology 
that can be easily standardized, potentially sterilized, is stable, 
and is ready for addition to T cell cultures. The attractiveness 

of this approach is its flexibility and modularity. Thus, different 
ligands can be added to the surface of the substrates and 
their densities on the surface can be tuned, facilitating consistent, 
reproducible results and potentially eliminating the variability 
observed with cell-based systems. Here we review the latest 
substrates used for aAPC production as well as their applications 
in laboratory and clinical settings.

Because the T cell response depends on the signals it receives 
from the antigen-presenting cell, control over antigen  
presentation translates into control over therapeutic out-
comes involving T cell stimulation  [16]. Efficient stimulation 
of antigen-specific T cells is mediated by several signals 
(Figure 1). Recognition occurs via the interaction of the  
T cell antigen receptor (TCR) with specific antigen in the 
form of a peptide/MHC complex (peptide-MHC) on the 
APC. In addition to this recognition signal, co-stimulation 
through the B7 and TNF families of receptors on the APC, 
which engage ligands such as CD28 on T cells, are known 
to amplify the antigen-specific T cell response  [17]. Thus, 
current approaches for engineering aAPCs exploit this co-
stimulatory signal as well as adhesion signals such as inter-
cellular adhesion molecule 1 (ICAM-1) to enhance their 
stimulatory capability  [14]. Finally, cytokines, the largest class 
of immunoregulatory molecules, are secreted by activated 
APCs and other immune cells and thus have been used as 
systemic agents for in vivo administration, supplements for 
stimulation in T cell cultures, and components of genetically 
modified cell-based immunotherapies  [16].

Clearly, an ideal aAPC should include these important 
physiological signals but also be amenable to adjustment of 
those signals to effect optimal outcomes in culture. In addition, 
if such systems can be rendered physiologically compatible, 
then application can be extended in vivo for active immuniza-
tion. Here we compare and contrast, in the order in which 
they were invented, present acellular aAPC platforms, assess 
their capacity to incorporate the signals needed for T cell 
stimulation and review the results that have been achieved 
to date on the bench and in the clinic.

While any surface presenting protein ligands for T cell 
stimulation can be classified as an artificial antigen-presenting 
substrate, we restrict this review to acellular substrates that 
are particulate in nature and present ligands or mediators 
intended to stimulate T lymphocytes. Thus, for the purpose of 
this review, we classify acellular aAPCs as those constructs derived 
from natural macromolecules such as lipids, synthetic products 
such as polymers (biodegradable and non-biodegradable) 
and magnetic materials. These constructs can perhaps be 



injected into the body for parenteral administration given an 
understanding of their biodistribution, pharmacokinetics 
and in vivo toxicology. Four types of materials have been 
used to construct the majority of particulate aAPC systems 
that have been evaluated thus far in vitro and in vivo 
(Table 1). These include liposomal materials, latex beads, 
magnetic beads, and biodegradable polymers. A schematic 
depicting the different configurations of these platforms is 
shown in Figure 2.

Liposomes are primarily amphiphilic phospholipids and 
cholesterol self-assembled into spherical vesicles with an 
aqueous interior (Figure 2). The popularity of these systems is 
in part due to the facile nature of their construction. They 
easily self-assemble in aqueous environments due to hydro-
phobic–hydrophilic interactions; furthermore, their sizes can be 
tuned from diameters ranging between 60 nm and 1 µm for 
unilamelar vesicles by mechanical methods. Liposomes were 
originally used as drug delivery vehicles  [18,19]. The amena-
bility to chemical functionalization of the phospholipid head 
of liposomes and the attachment of proteins using standard 
chemical methods allowed for tethering of T cell antigens and 
hence their use as artificial antigen-presenting vesicles.

Liposome-based antigen presentation was first reported in 
1978 as an artificial system for stimulation of polyclonal 
murine lymphocytes  [20]. Other applications that followed 
used liposomal aAPCs fabricated from different lipid prepa-
rations as well as isolated tumor cell or viral membranes  [20-23]. 
Isolated cell membranes as liposomal components provided 
the advantage that relevant antigens need not be identified.

The use of liposomes as aAPCs highlighted important 
biophysical concepts for effective T cell stimulation. For 
example, levels of stimulation were shown to depend on the 
density of T cell antigens on the liposome surface. In addition, 
different ratios of recognition to adhesion molecules on the 
aAPC surface were shown to influence the potency of stim-
ulation  [20,22]. Fluidity of the presenting surface also seemed 
to play an important role. Liposomes presenting class-II-
peptide-loaded MHCs upon incubation with CD4+ T cells 
induced the formation of supramolecular interfacial clusters, 
the product of a capping effect, rich in the TCR-associated 
molecules CD3 and MHC on the liposome and that are 
very similar to activation clusters induced by natural APCs 
upon interaction with T cells  [24]. Indeed, it was shown that 
pre-clustering of T cell antigens into microdomains on the 
liposomal aAPC surface further enhanced aAPC function  [25,26]. 
A characteristic feature of those microdomains is enrichment 
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of cholesterol, a major component of lipid rafts. Cholestrol 
in rafts interacts avidly with the beta subunit of cholera 
toxin which, when bioinylated, can provide an adaptor for 
multiple proteins through the use of neutravidin. Biotiny-
lated MHC and anti-CD28 or biotin-anti-CD3, anti-CD28, 
and anti- lymphocyte function-associated antigen 1 (LFA-1) 
were attached to these microdomains via cholera toxin–avidin 
linkage, ensuring not only defined stoichiometry, but also 
proper orientation. The important biophysical finding here 
is that distribution of T cell antigens, co-stimulatory and 
adhesion molecules on the APC surface significantly affected 
the magnitude and direction of lymphocyte stimulation  [25]. 
When used for polyclonal stimulation of human T cells, 
liposomal aAPCs with segregated antigen-clustered microdo-
mains preferentially expanded CD8+ cells, but maintained 
CD4+ cells at a low level and avoided terminal differentiation 
of the cells in vitro  [26]. It was also observed that a 150-fold 
expansion of melanoma antigen recognized by T cells 
(MART-1)-specific cells was possible after 2 weeks of culture 
with exogenous addition of IL-2 and IL-15  [26].

Instability of liposomes in culture and during storage, 
however, has detracted from their widespread use as APC 
surrogates  [27]. Thus other non-degradable aAPCs such as those 
fabricated from polymeric substrates have been investigated.

Unlike the fluid membranes and aqueous interiors of liposomes, 
latex polystyrene beads are solid spheres that can be coated 
by nonspecific interactions with different ligands to function 

as aAPCs. Despite the non-fluidic interface and their  
non-physiological nature, latex beads have proven invaluable 
in revealing aspects of aAPC–T cell signaling important for 
constructing optimal aAPCs  [28-37]. These constructs were 
first used to demonstrate the importance of aAPC size for 
T cell stimulation. Latex microspheres coated with MHC 
molecules or tumor cell membranes activated splenocytes 
depending on their size, with 4 – 5 µm diameter aAPCs 
producing the strongest responses  [38]. It was proposed that 
a large, continuous area of contact between a T cell and an 
aAPC was necessary because a greater number of smaller 
beads (1 – 3 µm diameter) could not achieve responses 
equivalent to their larger counterparts  [38]. Additionally, the 
presence of co-stimulatory (B7.1) and adhesion ligands 
(ICAM-1) on the aAPC surface was shown to enhance  
T cell stimulation  [35]. Importantly, it was the higher density 
of costimulatory ligands per bead, and not a greater number 
of beads presenting at lower densities that was crucial for 
greater responses  [35]. Activated T cells acquired effector 
function after 3 days of stimulation but ceased proliferation 
at this time unless exogenous cytokines such as IL-2 were 
added  [36], highlighting the necessity of cytokine delivery for 
long-term stimulation of lymphocytes in culture.

The simplicity of preparation of aAPC with latex beads 
facilitated other interesting investigations examining effects 
of specific signals on the phenotype, function, and numbers 
of T cells produced. These included: the difference in 
response between naive and memory cells to aAPCs presenting 
MHC and anti-CD28  [30], the importance of different 
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inflammatory and cytokine signals for the activation of 
CD4+ and CD8+ T cells  [28,31-34], and characterization of 
non-responsive states resulting from delivery of specific 
signals  [32,34,36]. Recent work with latex beads also showed 
that stimulation of naive antigen-specific murine CD8+ T cells 
by aAPCs bearing MHC class I and B7.1 in the presence of 
IL-2 and IL-21 created a unique effector phenotype  [28]. 
The resulting cells display activation markers such as CD44 
and cytolytic activity, but are unable to secreteIFN-   [28].

From the standpoint of clinically relevant CD8-restricted 
targets, recent studies used the melanoma antigen tryosinase-
related protein 2 (TRP2) and a glioma epitope (interleukin–13 
receptor 2) with latex bead-based aAPCs. PBMC from 
healthy donors were cultured with aAPCs presenting human 
MHC and the costimulatory molecules anti-CD28 and CD83 
in the presence of IL-2 and IL-7  [39]. The number of glioma 
antigen-specific cells increased 50 – 60-fold over 4 weeks, 
comprising 14.7% of the total population  [39]. Subsequent 
studies by the same group demonstrated an increase in the 
frequency of melanoma-specific T cells from 0.13% to 
23.5% after 4 weeks of stimulation by latex aAPCs displaying 
TRP2 peptide, anti-CD28, CD83, and the additional 
costimulatory ligand 4-1BBL again in the presence of IL-2 
and IL-7  [40]. The clinical relevance of this work is the 
important validation that significant populations of antigen-
specific cells can be expanded from unsorted populations 
with negligible antigen specificity.

Separation of large diameter (5 µm or larger) artificial 
non-biodegradable constructs from cultured T cells is clearly 
important to avoid in vivo complications such as embolism. 
Magnetic bead aAPCs are thus attractive for this particular 
reason. In addition to easy coupling of T cell ligands via 
established chemistries, these substrates enable an efficient 
method of bead removal from cell suspensions by application 
of simple magnets.

Magnetic beads as artificial substrates for ligand immobilization 
have been proposed and utilized primarily due to their ease 
of separation from expanded cells and because of their com-
mercial availability. Proteins can be coupled to the surface of 
these beads noncovalently by simple non-specific adsorption 
or through covalent coupling chemistries such as tosyl or 
tresyl activation, which introduce sulfonate groups on the 
bead for coupling to free amines on proteins. Magnetic 
beads coated with anti-CD3 and anti-CD28 have been used 
in this manner to stimulate both CD4+ and CD8+ cells  [41,42]. 
This effect was not observed when non-immobilized anti-CD28 
was used  [43].

Subsequent studies used magnetic beads in an antigen-specific 
format by coupling MHC tetramers loaded with influenza 
peptide through MHC antibodies that were first immobilized 
to the surface  [44]. Another configuration used MHC dim-
ers directly coupled to the beads  [13,45]. Tetramers coupled 
to beads were able to maintain the antigen specificity of 

sorted influenza-specific CD4+ T cells over 9 weeks of 
in vitro culture  [44]. MHC dimers were also used to confer 
antigen-specificity to magnetic beads  [13,45]. MHC dimers 
produced by genetically fusing MHC molecules to an immu-
noglobulin constant region confer flexibility to the construct, 
which increases the T cell receptor binding affinity  [13,45]. 
This approach in combination with T cell growth factors 
was used to generate up to 109 MART1-specific cells in less 
than 2 months  [13]. We reiterate that a particular advantage 
of acellular systems is their modularity, allowing for easy and 
flexible addition or subtraction of signals that affect T cell 
function. This modularity needs to incorporate cytokine 
delivery. Cytokines or T cell growth factors are critically 
needed during culture of T cells for robust stimulation and are 
often injected in vivo at high doses (up to 720,000 U/kg IL-2 
intravenously every 8 h) for adoptive cell transfer therapy  [46]. 
Although high dose IL-2 therapy can effectively lead to anti-
tumor responses in patients with metastatic melanoma and 
renal cell cancer  [47,48], patients receiving this therapy can 
undergo significant toxicities including hypotension requiring 
vasopressor support. Clearly, a means to provide all signals 
(including cytokine delivery) in a format that is biodegradable, 
physiologically compatible and localized to target T cells 
would be an attractive alternative.

Biodegradable polymers are well-suited to fabrication of 
vehicles because they can be made as particulate solid-phase 
supports in a variety of sizes and are capable of encapsulat-
ing cytokines that can be released at predictable rates using 
the appropriate polymers. This platform, however, presents a 
unique challenge to ligand presentation. While the biode-
gradable nature of these platforms is advantageous for safe 
in vivo use and controlled release of soluble mediators, bulk 
and surface erosion of the particles compromises long-term 
ligand presentation. Thus, ligands that are attached covalently 
or are nonspecifically adsorbed to the surface are too short-lived 
for sustained interactions with cells, which need to last from 
days to weeks.

There have been a variety of materials used to engineer 
solid biodegradable particles with and without surface 
functionality  [49-51]. Perhaps the most widely used are the 
aliphatic polyesters, specifically the hydrophobic poly(lactic 
acid) (PLA), the more hydrophilic poly(glycolic acid) (PGA) 
and their copolymers, poly(lactide-co-glycolide) (PLGA). 
The degradation rate of these polymers, and often the cor-
responding release rate of encapsulated product, can vary 
from days (PGA) to months (PLA) and is easily manipulated 
by varying the ratio of PLA to PGA. In 2004 Shalaby, et al. 
described the use of 7 µm jet-milled aAPCs fabricated from 
PGA and coated with murine or human anti-CD3 and 
anti-CD28 through irreversible adsorption. Stimulation with 
these aAPCs resulted in significant proliferation by day 3 of 
both mouse and human cells  [52]. Levels of proliferation 
exceeded those observed for plate-bound antibodies, but fell 



short of the level obtained by antibody-coated magnetic 
beads  [52]. IFN-  secretion could be detected in 58% of cells 
stimulated with antibody-coated PGA particles, while no 
cytokine secretion or proliferation occurred in response to 
uncoated particles  [52].

In a second aAPC system, PLGA particles 6 – 10 µm in 
diameter were fabricated using single and double emulsion 
techniques. Ligand presentation in this system was achieved 
via a unique method that incorporated an avidin–palmatic 
acid conjugate into the surface during particle fabrication. 
Palmatic acid preferentially interacts with the PLGA core 
while avidin partitions to the interface resulting in sustained 
and high density presentation of the avidin  [53]. This  
technology achieved durable coating of particles with  
biotinylated ligands as the avidin–fatty acid conjugate is 
maintained on the particle surface over time because of  
preferential non-covalent interaction with the polymer 
core  [53]. Stable presentation of biotinylated ligands was 
observed for more than 20 days in solution  [53]. To  
construct aAPCs from avidin-coated particles, biotinylated 
ligands were stably bound to the avidin-coated surface for 
presentation to T cells  [54]. Because the procedure is a  
one-pot process that mixes fatty acid-avidin, which  
partitions to the surface, with cytokines that become 
entrapped in the PLGA matrix, the fabrication procedure 
yields particles that present ligands and encapsulating cytok-
ines that release over a period of weeks while maintaining 
antigen presentation  [54].

Unsorted murine splenocytes, upon stimulation with 
PLGA particles (10 µg aAPCs per 105 cells) presenting 
anti-CD3 and anti-CD28 and releasing IL-2, showed a 
pronounced skewing by day 4 to nearly 100% CD8+  
T cells  [54]. This population expanded 45-fold over one week 
and expressed levels of the IL-2 receptor alpha subunit, 
CD25 approximately twice as high as other methods  [54]. 
These effects were not observed in the absence of encapsu-
lated IL-2. Compared with soluble antibodies or magnetic 
beads in cultures supplemented with exogenous IL-2, this 
system stimulated cells significantly better even in the 
absence of encapsulated cytokine  [54]. In the presence of 
encapsulated IL-2, paracrine delivery compared with exog-
enous addition increased the magnitude of expansion and 
skewed expansion to the CD8 phenotype at significantly 
lower doses of the cytokine.

Few studies have used acellular APC platforms in vivo as 
APC substitutes. Here we describe the findings from these 
studies regarding the efficacy of acellular platforms in 
induction of in vivo therapeutic immune responses. 
Interestingly, most in vivo studies have involved latex, 
magnetic, and biodegradable polymer aAPCs, while very 
little has been accomplished with liposomal vehicles for 
in vivo antigen presentation.

In vivo

Stimulation of primary T cell responses by in vivo injection 
of an acellular aAPCs was conducted as early as 1992  [55]. In 
this work 5 µm diameter silica microspheres bearing MHC 
class I moleculesisolated from tumor cells or purified tumor cell 
membranes were injected into mice  [55]. Murine tumor cell 
lines included P815, a mastocytoma, EL4, a thymoma, and 
2 lymphomas, RDM4 and BCLI  [55]. These aAPC systems, 
termed large multivalent immunogen (LMI), decreased 
tumor growth in the mouse models  [55]. Seven- to twelve-day-
established tumors, however, were not reduced by tumor 
membrane-coated LMI alone but were successfully treated with 
LMI in combination with cyclophosphamide, an established 
alkylating chemotherapeutic drug  [56].

This early work with LMI for active immunotherapy in 
mice prompted human Phase I trials in patients with 
advanced melanoma. Fifteen patients with stage IV melanoma 
received intradermal and subcutaneous injections, over a 
3-month period, of LMI aAPCs coated with melanoma cell 
lysates  [57]. The researchers monitored patients using two 
readouts: delayed-type hypersensitivity (DTH), which indicates 
the formation of T cell memory, and lytic activity of PBMC, 
indicating the formation of antigen-specific T cells against the 
M-1 melanoma cell line  [57]. Although DTH responses were 
not observed in any of the participants, an anecdotal increase in 
the frequency of PBMCs capable of mediating specific lysis 
of tumor cells in vitro was observed (but not statistically 
significant)  [57]. As recommended by these studies, future trials 
should use LMI in conjunction with adjuvant or chemotherapy 
to achieve outcomes similar to those observed in animal studies.

Other in vivo active immunotherapy studies used PGA 
particle-based aAPCs displaying anti-CD3 and anti-CD28 
or PGA particles releasing surface-adsorbed GM-CSF in mouse 
models of methA fibrosarcoma. These were co-injected with 
tumor cells or injected directly into established tumors  [52]. 
GM-CSF particles prevented tumor growths in 75% of the 
mice, while particles with anti-CD3 and anti-CD28 prevented 
growth in 68%; the combination treatment involving both 
particle types prevented growth in 100% of mice  [52]. Com-
bination treatment also resulted in regression of tumor mass 
in a treatment study. Here 57% of animals showed regression 
of established 2 – 4 mm diameter tumors  [52].

Our group has investigated the efficacy of aAPC treatment 
with particles releasing IL-2 in an established murine melanoma 
model (Figure 3). Animals were engrafted with B16 tumors 
expressing luciferase, enabling bioluminescent imaging to 
ensure uniformity of tumor size prior to treatment (Figure 3C). 
Mice received intratumoral injections of aAPCs consisting of 
PLGA particles encapsulating IL-2 and displaying anti-CD3 
and anti-CD28 on their surface. Compared with particles with-
out cytokine, paracrine delivery of IL-2 from aAPCs significantly 
delayed tumor growth kinetics with a single injection at day 
10 after tumor implantation (Figure 3D). Current studies are 
focusing on boosting this effect with multiple administrations 



of aAPCs and on elucidating the mechanism of this enhanced 
delay as it may be tied to local delivery of IL-2 affecting 
CD8+ T cell responses at the tumor site  [54].

Active immunotherapy studies involving acellular platforms 
thus far point to the feasibility and promise of this approach 
as an APC replacement for in vivo induction of therapeutic 
responses to tumors. A few unanswered questions remain, 
however, especially given the artificial nature of these platforms. 
Issues related to the biodistribution of the particles in the 
tumor site or in the body after parenteral administration need 
to be addressed adequately as these are foreign objects, and 
their toxicology is not completely understood. The magnitude 
and spectrum of immune responses after in vivo administration 

is also not fully characterized, and these will probably be 
critical factors for more rigorous studies. For these reasons 
alternative therapeutic modalities, such as adoptive immuno-
therapy, that focus on the benefits of the aAPC approach for 
ex vivo stimulation and expansion of T cells without neces-
sitating their use in vivo have advanced more quickly in clinical 
trials and these studies have met with great promise  [58].

Ex vivo

This therapeutic method involves the ex vivo expansion of 
T cells, which are infused back into patients to bolster the 
natural immune response. Such an approach was first studied 
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in humans using cytomegalovirus (CMV)-specific T cells that 
were cloned in vitro and administered to immunodeficient 
bone marrow recipients  [59,60]. Although susceptible to infec-
tion, the patients did not develop CMV disease or viremia 
after adoptive T cell transfer, suggesting that their immunity 
against CMV had been recovered. Following this success, 
researchers demonstrated that the adoptive transfer of autolo-
gous antigen-specific T cells was a viable therapeutic approach 
to the Epstein–Barr virus (EBV)  [61] as well as HIV-related 
infection  [62,63]. Moreover, expanded tumor-specific T cells 
have been shown to strengthen patients’ immune responses 
to melanoma by infiltrating the tumor site and inducing 
tumor regression in approximately 50% of patients  [58,64,65]. 
Thus, adoptive T cell transfer has potential applications in 
the treatment of both infectious diseases and cancer.

In the studies noted above, cells were expanded ex vivo 
using various combinations of irradiated feeder cells, the 
human anti-CD3 antibody OKT3, and high concentrations 
of IL-2 (6000 IU/ml)  [58,64,65]. The use of acellular formats 
such as latex- and magnetic-bead-based aAPCs began with 
studies conducted in a variety of murine models. The first 
of such studies showed altered trafficking of adoptively trans-
fered T cells in the presence of LMI. In this work, Goldeberg, 
et al. used 5 µm latex beads coated with avidin to bind 
MHC molecules loaded with a peptide derived from ovalbumin, 
a model antigen. These were capable of stimulating CD8+ 
ova-specific OT-I T cells. OT-I cells were isolated from 
lymph nodes, adherence depleted, and intravenously injected 
directly into B6 recipients  [66]. Two to three days later, mice 
were challenged by intraperitoneal injection of EG.7 cells, a 
thymoma tumor that expresses ovalbumin, with or without 
intraperitoneal or intravenous injection of aAPCs  [66]. 
Adoptively transfered cells migrated to the spleen and lymph 
node by day 1 and were found in the peritoneal cavity on 
day 4 only in mice that received aAPCs  [66]. Mice receiving 
aAPCs also showed reduced tumor burdens and harbored 
significantly higher numbers of OT-I cells  [66].

A second adoptive transfer study involving latex-bead-based 
aAPCs was performed using the B16 murine melanoma model. 
Pulmonary tumors were treated by intravenous administration 
on day 3 of 107 T cells specific for the TRP2 melanoma 
antigen  [40]. Cells were generated by in vitro culture of wild-
type splenocytes with aAPCs (10 cells:1 aAPC) presenting 
TRP2-specific MHC dimer and co-stimulatory molecules 
and were sorted for antigen specificity prior to injection  [40]. 
Subcutaneous tumors were treated on day 5 in the same 
manner. Neither case employed exogenous cytokine addi-
tion. Mice displayed significantly fewer pulmonary tumors 
on day 20 when treated with aAPC-expanded cells (com-
pared with transfer of naive CD8+ cells)  [40]. In the subcu-
taneous tumor experiments, mice receiving aAPC-expanded 
cells experienced 100% survival at day 60 with negligible 
tumor burden, while mice receiving naive CD8+ cells as a 
negative control did not survive more than 27 days  [40]. 
Despite the long culture periods required (28 days followed 

by cell selection for antigen specificity) and the large number 
of cells required (107 cells per mouse), this study demon-
strated remarkable efficacy regarding the utility of adoptive 
cell transfer therapy. We note that in other B16 treatment 
studies similar efficacies were observed in mice with 106 or 
fewer cells cultured over a period of 7 days when preparative 
lymphodepletion was employed  [67].

The use of magnetic-bead-based aAPCs was investigated 
in a severe combined immunodeficiency (SCID) mice bearing 
human melanoma tumors  [68]. These mice received MART-1 
specific T cells generated from human PBMC after 1 month 
of in vitro culture with magnetic beads presenting MART-1-
loaded human MHC dimers and anti-CD28 (1:1 ratio of 
aAPCs to cells)  [68]. Mice bearing 2-week-old tumors received 
an intravenous injection of 3  106 MART-1 specific cells 
and IL-2 injections (2  105 IU/mouse) on days 0 and 2 
following cell transfer  [68]. Magnetic-bead-expanded cells 
were compared with cells stimulated by monocyte-derived 
DC. Tumors displayed significantly delayed growth kinetics 
in mice receiving aAPC-expanded cells (compared with 
untreated tumors) and these cells performed on par with 
cells expanded by DCs.

Magnetic-bead-based aAPCs have also been used in 
human adoptive cell transfer trials in HIV infection  [69,70] or 
in conjunction with hematopoietic stem cells transplants for 
hematological malignancies  [71-73]. In these cases CD4+ T 
cells were stimulated ex vivo with magnetic beads displaying 
human anti-CD3 and anti-CD28, and the resulting popula-
tions (following aAPC removal) were adoptively transfered 
to patients to repopulate the lymphocyte compartment. In 
the case of HIV infection, classical methods of T cell activation, 
such as phytohemagglutinin and IL-2, also activate viral 
replication, making T cell expansion futile  [43]. Activation with 
anti-CD3 and anti-CD28 coated magnetic bead aAPCs, 
however, expanded CD4+ T cells without viral activation and 
decreased surface expression of CCR5, a critical co-receptor 
for viral entry, on T cells  [74].

When eight patients with established HIV infection 
received three infusions of aAPC-expanded CD4+ T cells, a 
decrease in CCR5 expression was observed at 158 days, 
suggesting resistance to HIV  [69]. In addition, sustained 
increases in CD4+ T cell counts were achieved  [69]. In a 
subsequent study by the same group, the ability of the same 
aAPCs to expand CD4+ T cells containing lentiviral genetic 
modifications conferring HIV resistance was investigated. 
T cells were transduced with vectors to produce an RNA 
antisense sequence that prevents productive replication of 
the HIV-1 virus  [75,76]. Five patients received a single infusion of 
these genetically modified lymphocytes resulting in increased 
cellular responses, as assessed by antigen-specific IFN-  
secretion, in four patients  [70]. Similarly, treatment of patients 
with a variety of hematological malignancies by adoptive 
transfer of T cells stimulated ex vivo by magnetic-bead-based 
aAPCs presenting anti-CD3 and anti-CD28 resulted in 
notable responses in clinical settings  [71-73] (For review see  [77]).



Many aspects of the aforementioned adoptive transfer 
studies are encouraging. Cells generated from unselected 
precursors acquire antigen specificity and demonstrate activ-
ity in vivo with clinically relevant antigens. Several studies, 
especially those performed in mice, involve tumors with 
antigens that are well characterized and expressed in a rela-
tively uniform manner. Other studies use mice lacking a 
functional immune system, which is often exploited by the 
tumors for protection through the use of myeloid derived 
suppressor cells and indeed can thwart immunotherapy  [78]. 
The translation of the results from these studies using 
immunodeficient mice to clinical applications will need to 
be made with caution as immunodeficient mice may not 
sufficiently mimic the immunological state of cancer patients, 
who have an immune system, albeit attenuated. More sig-
nificant is the issue of persistence of adoptively transferred 
cells. Cells expanded ex vivo often have limited persistence 
in vivo, necessitating frequent injections. Thus, the use of 
exogenous cytokines such as IL-2, IL-7, IL-15 and IL-21 
provides survival signals for activated effector cells, suggest-
ing their use ex vivo or following infusion of transferred cells 
is critical for the success of adoptive therapy. However, high 
systemic doses of these cytokines can be quite toxic, limiting 
therapeutic efficacy. Further studies are needed to determine 
optimal conditions for ex vivo stimulation and in vivo 
survival that yield persistent and viable cells.

Artificial antigen-presentation on synthetic substrates is an 
attractive strategy for stimulation and expansion of T cells 
primarily because it offers the flexibility over assembly of 
different combinations and ratios of ligands enabling the 
investigation of a wide range of activation conditions. These 
conditions can affect the quantity and quality of expanded 
cells. Additionally, because such systems are not subject to 
genetic variability of ligand expression or culture conditions 
that may alter their function, they offer savings in time and 
labor. Some aAPC formulations, such as liposomal or biode-
gradable polymer systems, already consist of materials that 
have a long history of use in the pharmaceutical industry 
and can be produced under good manufacturing practices 
(GMP) conditions. Thus for ex vivo use these systems offer 
attractive advantages over live cells.

The in vivo applications of such systems are promising as 
well. An artificial APC displaying tumor-associated antigens 
obviates the concern over how tumors affect DC function, 
phenotype or activation state. Cancer is associated with an 
environment that disfavors effective antigen presentation by 
professional APCs with the production of suppressor cells 
and tumor-associated macrophages that hinder DC function  [11]. 
Artificial APCs, when homed to tumor targets, are not 
susceptible to dysfunction because of their synthetic nature.

Despite these positive aspects some challenges remain 
with current aAPC technology. One of the main hurdles to 

effective in vivo use of aAPCs is the issue of size. Particles 
between 5 and 10 µm in diameter are most efficient at  
T cell stimulation; however, particles of this size pose a 
significant risk if systemically administered. Non-deformable 
particles composed of latex, magnetic materials, and biode-
gradable polymers may lodge in capillary beds and lead to 
embolism. Thus, it will be necessary to create nanoscale 
aAPCs to enable efficient transport through the body. Ulti-
mately, a balance between nanosizing of such systems for 
circulation requirements and induction of immunity will 
need be achieved to realize therapeutic efficacy.

Artificial particles that are injected systemically need to 
avoid clearance by the reticuloendothelial system (RES) for 
proper homing in to targets. The most widely used surface 
coupling group for this purpose is PEG because this group 
creates a hydrophilic surface that facilitates long circulation of 
the particles. This strategy has been used successfully in 
making ‘stealth’ liposomes with affinity towards target cells  [79-81]. 
Functionality could also be introduced by incorporating PEG 
with functional endgroups for coupling to target ligands.

Passive delivery of nanoscaled aAPCs may also be harnessed 
to target tumors for antigen presentation at the tumor site. 
Aggressive tumors inherently develop leaky vasculature with 
100 – 800 nm pores due to rapid formation of vessels that 
must serve the fast-growing tumor. This defect in vasculature 
coupled with poor lymphatic drainage serves to enhance the 
permeation and retention of nanoparticles within the tumor 
region. Often called the EPR effect  [82,83], this phenomenon 
is a form of passive targeting. The basis for increased tumor 
specificity is the differential accumulation of particles in 
tumor tissue versus normal cells, which results from particle 
size rather than binding. Normal tissues contain capillaries 
with tight junctions that are less permeable to particulates. 
Passive targeting can therefore result in increases in particle 
concentrations in solid tumors of several-fold relative to  
free drug molecules. While this effect has been observed for 
drug delivery, it is unclear if it can be exploited for antigen-
presentation at the tumor site and expansion of antigen-specific 
tumor infiltrating lymphocytes using nanoparticles surface 
engineered with specific T cell antigens  [84].

Acellular aAPCs engineered to encapsulate soluble mediators 
overcome another limitation. The majority of studies discussed 
in this review involved the addition of exogenous cytokines. 
Natural aAPCs are known to secrete cytokines in a paracrine 
fashion to lymphocytes  [16]. Indeed, exogenous additions of 
this third signal are needed for efficient stimulation of T cells 
ex vivo and their systemic injection is needed for persistence 
and viability of expanded subsets in many cases. Exogenous 
addition of cytokines in vivo can cause significant toxicity, as 
in the case of IL-2  [85]. Thus, the ability to deliver cytokines 
locally in a paracrine fashion from aAPC constructs may not 
only enhance the persistence of targeted cells but may alleviate 
the high doses needed for in vivo efficacy.

An important limitation of artificial systems that are 
injected into the body is an incomplete understanding of 



how these constructs biodistribute in various organs and 
their pharmacokinetics in disease models. No current  
animal model has proved to be a reliable predictor of  
clinical results nor is any model widely accepted as a gold 
standard for testing novel immunotherapies. When consid-
ering the available models in which to test aAPCs and  
the clinical data regarding immunotherapy, these constructs 
are subject to many of the same barriers that thwart more 
conventional tumor therapies. Importantly, the persistence of 
T cells in vivo is an issue of paramount importance for 
adoptive immunotherapy. In order to achieve a durable 
response, immunological memory is required. Recent work 
has shown that the phenotype of ex vivo expanded cells can 
dictate the survival potential of transferred cells in vivo  [86]. 
In addition, treatment of animals or patients with lym-
phodepleting regimens prior to adoptive cell transfer therapy 
can result in homeostatic proliferation of the transferred 
cells, leading to greater persistence  [87].

The most promising use of aAPCs at present is their 
ex vivo application, which allows for control over the number 

and phenotype of T cells expanded. For in vivo applications, 
a greater understanding of their biodistribution and immune 
response is needed prior to realizing their full potential. 
With this understanding and the novel biologically inspired 
strategies incorporated within these platforms there is no 
doubt that these hurdles will be crossed for practical application 
in clinical settings.
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