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Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One
promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial
substrates with high surface area. Here, we show that a carbon nanotube–polymer composite can act as an artificial
antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled
carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor
interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble
IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results
show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.

A goal of successful cancer immunotherapy is the stimulation
of T cells against tumour targets1. A promising method for
this purpose is adoptive cell-transfer therapy2. This tech-

nique relies on the ex vivo expansion and infusion of tumour-
specific T cells from patients’ blood. A lack of efficient procedures
for expansion of the cells currently limits the application of this
therapy, but this may be overcome by the engineering of a new
generation of devices for T-cell expansion and enrichment3. One
example is the recent use of synthetic biology to engineer antibody
fragments in T cells4,5. These T cells have been shown to provide
long-lasting therapeutic effects for relapsed or refractory B-cell
acute lymphoblastic leukaemia6.

Effective immunity requires that antigen-specific lymphocytes
undergo activation, expansion and differentiation through inter-
action with antigen-presenting cells (APCs) such as dendritic cells
(DCs)7. These DCs can be used to initiate potent immune responses,
but cost and time-dependent factors related to their procurement
and production have limited their widespread use8,9. It is known
that natural antigen presentation involves avid interactions with
T cells10,11, leading to efficient stimulation12,13. Regions with a high
density of T-cell antigen receptors have been termed immunological
synapses14,15 because they are critical for lymphocyte stimulation16,17.
Antigen density is also important on the organ scale. In the lymph
node, the primary site for T-cell stimulation, APCs concentrate
antigen in dense regions in close proximity to T cells. For this
reason, high-antigen-density platforms such as magnetic beads18,
liposomes19, exosomes20, biodegradable polymer particles21 and
latex beads22 have been proposed as artificial APCs (aAPCs)8.
Finally, cytokines—the largest class of immunoregulatory
molecules—play a critical role in long-term T-cell expansion7. For
example, IL-2 is a key signal for T-cell cluster initiation and per-
sistence after antigen priming23. It is secreted in paracrine fashion
at the interface between a T cell and an APC upon contact24, and
has been used as a component of cell-based immunotherapies25,26.

Here, we report a carbon nanotube–polymer composite (CNP)
that can function as an efficient aAPC for expanding T cells for
cancer immunotherapy. Carbon nanotubes (CNTs) were selected
as the base nanomaterial because of their pronounced aspect ratio,
which provides a unique nanometre-scale topography, a feature
previously shown to enhance cell–cell interactions and long-term
cultures27–29. The topography of CNTs facilitates a clustered presen-
tation of T-cell stimuli, peptide-loaded major histocompatibility
complex class-I (MHC-I), and the co-stimulatory ligand anti-
CD28 (αCD28). Furthermore, the polymer component of the com-
posite allows for paracrine delivery of IL-230, which is encapsulated
in biotinylated poly(lactide-co-glycolide) (PLGA) nanoparticles
together with magnetite. Magnetite is used here for enrichment of
the CNP-expanded T cells by magnetic separation. Our results indi-
cate that the carbon nanotube–polymer composite expands cyto-
toxic T cells in vitro to a level comparable to clinical standards
using 1,000-fold less soluble IL-2. Furthermore, expanded lympho-
cytes are shown to significantly delay tumour growth in a murine
melanoma model two weeks after tumour inoculation. We further
demonstrate the application of the CNP with human cells.
Compared to human DCs, CNPs show greater expansion of
human Epstein–Barr Virus (EBV)-specific CD8+ T cells. These
results demonstrate the promise of this composite platform for
T-cell cancer immunotherapy.

Synthesis and characterization of CNPs
The synthesis and functionalization of CNTs have previously been
shown to yield ultrapure, hydroxyl-modified bundled nanotubes
that are rich in surface defects and present a high surface area31,32.
In the scheme shown in Fig. 1a, the protein linker neutravidin
was adsorbed onto CNTs to yield neutravidin-bound CNTs
(NCNTs). Stoichiometric amounts of biotinylated T-cell stimulatory
signals were then bound to the surface. This simple method enables
stable presentation of different T-cell antigens33. A third crucial
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signal involves paracrine delivery of cytokines to T cells. By binding
PLGA nanoparticles co-encapsulating IL-2 and magnetite to
NCNTs, we integrated the multivalent presentation of physiological
T-cell stimuli with paracrine delivery of IL-2, while enabling the
magnetic separation of CNPs from T cells (Fig. 1b). These features
were tested by first stimulating ovalbumin-specific CD8+ T cells
directly isolated from transgenic mice (OT-1)34. Next, after mag-
netic separation from CNPs (Fig. 1c) we measured the therapeutic
efficacy of those activated T cells in mice inoculated with melanoma
cells expressing the ovalbumin antigen (B16-OVA).

The evolution of the platform from bundled CNTs to CNPs is
shown in Fig. 2a,b. Structural gaps in the CNTs facilitate the adsorp-
tion of proteins (Fig. 2a) and nanoparticles (Fig. 2b, left panels). We
first confirmed the encapsulation of magnetite in the PLGA
nanoparticles and the qualitative binding of neutravidin-gold to
bundled CNTs by transmission electron microscopy (TEM;
Fig. 2b, right panels). The CNTs bundled into particles with a diam-
eter of ∼13 µm (Fig. 2c and Supplementary Fig. 1a) and were func-
tionalized to introduce surface defects, resulting in a higher surface

area (Table 1 and Supplementary Fig. 1b,c). The diameter of the
PLGA nanoparticles was estimated to be ∼264 nm (Fig. 2c).
Biotin-PEG functionality on the nanoparticle surface was confirmed
by 1H NMR spectroscopy, with the presence of methylene protons
from the PEG segment appearing at ∼3.5 ppm (Supplementary
Fig. 1d). As expected, the nanoparticles exhibited superparamag-
netic properties at room temperature (Supplementary Fig. 1e).
The adsorption isotherm of neutravidin on CNTs also demon-
strated saturation at 8 nmol of protein/mg CNT (Supplementary
Fig. 1f ). Additional studies determined that optimal T-cell stimu-
lation was achieved using 5 µg/ml NCNT, 125 µg/ml PLGA nano-
particles and a 2.1 nM concentration of biotinylated MHC-I and
αCD28 (Supplementary Fig. 2). Comparing the CD8+ T-cell
response using avidin- or streptavidin-bound CNTs to NCNTs
under similar experimental conditions indicated that, although the
amount and distribution of protein is the same with all three
platforms (Supplementary Fig. 3), the charge microenvironment
provided by NCNTs was more optimal for the stimulation of
T cells (Supplementary Fig. 4).
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Figure 1 | Design of CNPs. Schematics describing the combination of multivalent antigen presentation, paracrine delivery of cytokine, and T-cell enrichment
capabilities into CNPs. a, Schematic showing bundled CNTs binding neutravidin to present biotinylated T-cell stimuli and PLGA nanoparticles encapsulating
magnetite and IL-2. b, Schematic highlighting three properties of the engineered CNP platform: multivalent antigen presentation, paracrine release of IL-2 and
magnetic separation of CNPs from T cells. c, Work flow diagram depicting the T-cell stimulation process and cell separation using CNPs. OT-1 CD8+ T cells
were purified from splenocytes, and incubated with CNPs for three days. Activated T cells were then separated from CNPs and injected peritumorally into B6
mice, which had previously been inoculated with the B16 tumour for ten days.
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To investigate the impact of magnetite loading on IL-2 release
from PLGA nanoparticles and subsequent T-cell stimulation,
loading of magnetite was varied by wt% (6, 12 and 30 wt%;
Table 2). We first observed a strong correlation between the wt%
of magnetite (Supplementary Fig. 5a) and the number of PLGA
nanoparticles encapsulating the magnetite (Supplementary
Fig. 5b). For example, doubling the magnetite loading from 6 wt%
to 12 wt% results in half as many particles, close to 8 × 109 particles.
Second, varying the wt% of magnetite co-encapsulated with the
same amount of IL-2 in nanoparticles significantly affected the
seven-day cumulative release of cytokine on a per-particle basis
(Supplementary Fig. 5c). Third, CD8+ T cells incubated with
CNPs at various wt% loadings of magnetite showed an optimal
IFN-γ response at day 3 for particles loaded at 12 wt% when
compared to other loadings at equal particle concentration

(Supplementary Fig. 5d). Finally, the cell separation efficiency
with the 12 wt% magnetite group was measured to be ∼98% using
flow cytometry and nanoparticle tracking analysis (Fig. 2d and
Supplementary Fig. 5e,f ). Images of samples before and after separ-
ation show successful separation of the CNPs from cells (Fig. 2e). To
visualize and validate protein cluster formation on the surface of the
CNT bundles, fluorescence resonance energy transfer (FRET)
analysis was performed on the antigen-bound NCNT platform
using acceptor photobleaching (Supplementary Fig. 6)35. The repre-
sentative FRET efficiency map derived from the change in donor
emission suggests the presence of several micrometre-scale antigen
clusters with 60–70% FRET efficiencies (Fig. 2f). Finally, the presen-
tation of biotin on PLGA nanoparticles was achieved using fatty
acids and lipids as hydrophobic anchors to enable a high-density
and long-lasting association with the PLGA matrix36,37. This
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Figure 2 | Characterization of CNPs. CNP structure was characterized for size, magnetic separation, multivalent antigen presentation and release of cytokine.
a, Scanning electron microscopy (SEM, top) and TEM (bottom) images of a CNT bundle. b, Left: SEM images of a CNP at low (top) and high (bottom)
magnifications. Right: TEM images of PLGA nanoparticles (top) and NCNT (bottom). The white arrow points to magnetite nanoparticles encapsulated within
the PLGA nanoparticles. The black arrow in the bottom image points to a gold neutravidin particle on NCNT. c, Size distribution of bundled CNT
microparticles and PLGA nanoparticles measured from SEM images and using nanoparticle tracking analysis, respectively. Mean diameters are shown at the
top of each plot. d, Scatter profiles for activated CD8+ T cells with CNPs before and after magnetic separation. The top left gate on each graph is drawn
around the PLGA nanoparticles; the larger gate is drawn around CD8+ T cells. SSC, side scatter; FSC, forward scatter. e, Images of culture samples during
the process of cell isolation. The black arrow points to the localization of CNPs where a magnetic field was applied. f, Representative FRET efficiency image
for a NCNT substrate. The colour scale represents the degree of FRET efficiency from no clustering (0 value) to the highest measured FRET efficiency (0.7).
Ten independent samples were measured per group. g, Measurement of encapsulated IL-2 (grey circles, left axis) and iron (empty circles, right axis) release
from PLGA nanoparticles over a one-week period. The results are mean values from three independent experiments. Error bars represent ±s.e.m.
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biotinylation step further affords the attachment to NCNTs and
allows co-encapsulation and prolonged retention of fatty acid-modi-
fied magnetite38. We measured the cumulative release of IL-2 and
iron from PLGA nanoparticles loaded with 12 wt% magnetite
(Fig. 2g). The controlled release profile of IL-2, measured over a
period of more than a week, is typical of protein release during
PLGA degradation21. It is characterized by an initial burst release
followed by a continual release of protein over time. Leaching of
iron from the particles was negligible over 150 h, and was measured
to be below 0.01% of loaded iron.

In vitro stimulation of CD8+ T-cell effectors by CNPs
We first examined the efficacy of CNPs as an aAPC by incubation
with CD8+ T cells isolated from an OT-1 mouse. Figure 3a compares
expansion as a function of time for T cells interacting with CNPs;
NCNTs, Dynabeads (commercially available magnetic beads) or
soluble tetramers presenting antigens with exogenous IL-2
(NCNT-EXO, DYNA-EXO and TET-EXO, respectively); and
NCNTs, Dynabeads or soluble tetramers presenting antigens
without the addition of IL-2 (NCNT, DYNA and TET, respectively).
After two weeks, CD8+ T cells expanded ∼200-fold, more than twice
the cumulative expansion of cells interacting with DYNA-EXO, and
more than four times that for TET-EXO. The sizing of cells interact-
ing with these same platforms indicates that effects on expansion
potentially extend to cell phenotype (Table 3). Finally, the measure-
ment of IFN-γ released from these CD8+ T cells parallels previous
results on cell proliferation and size (Fig. 3b).

The early interaction of CD8+ T cells with CNPs (Fig. 3c) is
characterized by the formation of non-specific cell clusters around
particles displaying MHC-I loaded with the null agonist peptide
(SIYRYYGL) that does not trigger the OT-1 T-cell receptor
(CNP/Null Agonist). Upregulation of effector markers was,
however, observed in T cells interacting with CNPs presenting
OT-1-specific antigens (MHC-I loaded with the peptide
SIINFEKL). This was characterized by the presence of cytotoxic
granules and the secretion of granzyme-B (Fig. 3c, top row, white

arrow). Expression of CD25, the α-chain of the IL-2 receptor, was
also observed at the T cell–CNP interphase. As expected, T cells
cultured in the presence of CNP/Null Agonist did not express
CD25 or granzyme-B. T cells incubated with soluble tetramers or
Dynabeads expressed these effector markers (Fig. 3c, bottom two
rows), although not to the same level of fluorescence intensity as
observed with CNPs. T-cell cultures with CNPs displaying agonist
peptide showed the formation of large cellular aggregates around
the particle at 24 h, increasing in size through 48 and 72 h, as is
characteristic of vigorous T-cell proliferation (Fig. 3d).

Flow cytometry analysis of activated cell phenotype indicated
that a higher percentage of CD8+ T cells expanded using CNPs
retained expression of CD27 (a marker of T-cell expansion),
CD69 (an early activation marker), CD25 (the IL-2 receptor) and
CD62L (an L-selectin adhesion receptor on naive and central
memory T cells). The percentage of CD8+/CD27+ T cells activated
by CNPs was consistently above 90% during the first week of
culture, and was significantly higher than the percentage of
CD8+/CD27+ T cells generated by DYNA-EXO and TET-EXO at
days 5, 7 and 14 (Fig. 4a and Supplementary Fig. 7b). Under the
present culture conditions, at least 90% of CD8+ T cells activated
by CNPs were CD69+/CD25+ (Fig. 4b and Supplementary
Fig. 7c), and a higher percentage of CD8+ T cells expressing a
CD44+/CD62L+ phenotype was sustained in the CNP group at
days 7 and 14 (Fig. 4c and Supplementary Fig. 7d). Overall,
T cells stimulated by CNPs were able to retain a stronger activated
cell phenotype than controls (Supplementary Fig. 8). Expression
of granzyme-B in T cells activated by CNPs was significantly
higher than lymphocytes cultured with DYNA-EXO and
TET-EXO (Fig. 4d and Supplementary Fig. 9). This is consistent
with measurements of cell-specific cytolytic activity in lymphocytes
previously expanded with CNPs and cultured with a melanoma
tumour cell line (B16-OVA) (Fig. 4e). At an effector-to-target
(E:T) ratio of 20:1, tumour cell lysis by T cells expanded with
CNPs was as much as three times the cytolytic activity observed
in cells expanded using commercially available magnetic beads
supplemented with IL-2 in culture (DYNA-EXO).

Previous work has established the importance of IL-2 in increas-
ing the proliferative capacity of T cells39. A recent study has
demonstrated that at least 1,000-fold higher exogenous IL-2 con-
centration is required to match the effects of sustained paracrine
delivery30,40. For this reason, we chose to approximate the observed
effects of CNPs on CD8+ T cells by adding 1,000-fold more
exogenous IL-2 (62.5 ng ml−1) in control groups, and to test the
therapeutic efficacy of activated T cells in the context of a murine
B16 melanoma model. Flow cytometry analysis of the expression
of CD69 and CD25 from CD8+ T cells cultured for three
days with either CNPs and Dynabeads or soluble tetramers with
1,000-fold more IL-2 (DYNA-EXO+ and TET-EXO+, respectively)

Table 1 | Physiochemical properties of two main components of CNP.

Property Functionalized CNT PLGA nanoparticles
Diameter ∼0.8 nm/nanotube ∼150–200 nm/particle
Length ∼0.5–5 μm/tube

∼20–40 μm/assembly
NA

Zeta potential (in H2O) –2.6 mV –2.2 mV
Zeta potential (in buffer) –26.4 mV –5.0 mV
Surface group 1,610 m2 g−1 5 × 10−13m2/particle
Functional group Hydroxyl PEG-biotin
Magnetite loading NA 12% by weight of PLGA
Protein loading ∼8 nmol neutravidin/

0.005 mg ml−1 CNT
∼50 μg IL-2/100 mg PLGA

Concentration used in culture 5 μg ml−1 125 μg ml−1

Amount of antigen presented 2.1 nM NA

NA, not applicable.

Table 2 | Effect of magnetite loading on magnetic
separation, IL-2 release and T-cell stimulation.

Per cent loading of magnetite in PLGA nanoparticles

6 wt% 12 wt%* 30 wt%
Per cent separation
efficiency

72.5 ± 4.9 97.7 ± 1.0 95.8 ± 1.2

Il-2 released
(pg/1010 particles)

773.5 ± 47.4 480.5 ± 9.2 293.9 ± 1.6

T-cell response
(pg IFN-γ/ml)

1,622.5 ± 834.4 5,056.3 ± 595.7 3,122.5 ± 413.7

*These values highlight the results for the group selected in the paper (12 wt%).
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Figure 3 | CNPs enhance the long-term expansion of CD8+ T cells. Measurement and visualization of T cells incubated with CNPs. a, Expansion of OT-1
CD8+ T cells measured using a Coulter counter during a two-week period. The results are mean values from three independent experiments. Error bars
represent ±s.d. b, IFN-γ release from OT-1 CD8+ T cells measured at each time point during the two-week period. The results are mean values from three
independent experiments. Error bars represent ±s.e.m. *P < 0.05, **P < 0.01, ***P < 0.0001. c, Confocal images of OT-1 CD8+ T cells at 24 h interacting with,
from top to bottom, CNP, CNP presenting a non-agonist antigen (labelled CNP/Null Agonist), TET-EXO and DYNA-EXO, respectively. DAPI nuclear stain,
blue; Phalloidin Texas Red-X, yellow; CD25 FITC, green; granzyme-B AF647, red. White arrow points to granule secretion from T cells as a result of
activation. These images are representative of three independent experiments. d, Formation of CNP-CD8+ T-cell aggregates viewed with an inverted-phase
contrast microscope at 24 h, 48 h and 72 h. The black arrow points to a CNP–T cell aggregate (shown at higher magnification in the inset). Images are
representative of three independent experiments.
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indicated no significant differences in the percentage of activated
T-cell populations (Supplementary Fig. 10a). Control groups
significantly upregulated expression levels for CD25 and
CD69 when compared to previous day 3 measurements using
1,000-fold less IL-2 (Supplementary Fig. 10b). In the context of
T-cell function, intracellular granzyme-B levels increased for
T cells previously cultured with DYNA-EXO+ and TET-EXO+ (by
as much as 55% for the latter) compared to groups lacking
the 1,000-fold excess IL-2 (Supplementary Fig. 10c), resulting in
a significant enhancement in cell-specific cytolytic activity
(Supplementary Fig. 10d). This is consistent with previous
studies showing that IL-2 increases the cytolytic function in a
dose-dependent manner during the primary activation of murine
CD8+ T cells in vitro41.

In vivo anti-tumour activity of CNP-activated T cells
We evaluated the effects of CNPs for adoptive therapy against the
B16 mouse melanoma model by transferring CD8+ T cells via a
single peritumoral injection. Mice were inoculated with the B16
tumour for ten days before T-cell injection. A significant delay in
tumour growth at day 14 can be observed with animals adoptively
transferred with CNP-cultured T cells compared with those
without any treatment (Fig. 5a–c). Similar therapeutic effects with
other platforms such as Dynabeads can be achieved, but only with
1,000-fold more IL-2.

To elucidate the immunological mechanisms behind the delayed
tumour growth with CNP-cultured T cells, tumour-infiltrating lym-
phocytes (TILs) were harvested from the tumours of animals killed
at day 14. A higher count of lymphocytes was detected in the
tumour microenvironment42, as indicated by the absolute number
of isolated CD8+ T cells per tumour in mice treated with CNP-
stimulated cells versus control platforms (Fig. 5d). Tumour-infiltrat-
ing CD8+ T-cell counts in the CNP group were similar to those for
mice treated with cells previously expanded using DYNA-EXO+, but
at least ten times higher than in other control groups. T cells isolated
from tumours treated with CNP or DYNA-EXO+ were terminally
differentiated into effectors, as indicated by a high proportion of
lymphocytes expressing a CD44+/CD62L− phenotype (Fig. 5e).
Histological evaluation of tumour tissue in the CNP group con-
firmed evidence of lymphocyte infiltration and apoptosis in
tumour cells (Fig. 5f, black arrow). This was also observed with
tumour tissues isolated from DYNA-EXO+ mice (Fig. 5f, dashed
arrow), but to a lesser extent with tumours isolated from TET-
EXO+ mice. As expected, tissue samples from tumours in mice
receiving no treatment showed the highest extent of cytologic

Table 3 | Effect of CNP on T-cell proliferation and cell size
as a function of time.

Group Days Fold expansion Cell diameter (μm)
CNP 3 7.0 ± 0.1 9.3 ± 0.1

5 22.4 ± 0.9 9.2 ± 0.1
7 65.8 ± 5.2 8.1 ± 0.1
14 191.9 ± 15.9 7.6 ± 0.0

TET-EXO 3 7.1 ± 0.2 8.6 ± 0.0
5 17.7 ± 0.5 7.6 ± 0.0
7 37.0 ± 1.3 6.5 ± 0.2
14 44.1 ± 3.6 6.7 ± 0.0

DYNA-EXO 3 7.3 ± 0.2 8.8 ± 0.1
5 20.8 ± 0.6 7.9 ± 0.0
7 46.7 ± 1.9 6.8 ± 0.1
14 77.1 ± 3.6 7.1 ± 0.1
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Figure 4 | Effect of CNPs on T-cell phenotype and cytolytic activity. Expression of survival and activation markers, as well as cytotoxic functions from CD8+
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respectively, in OT-1 CD8+ T cells incubated with CNP versus controls as a function of time. d, Normalized expression of intracellular granzyme-B at day 3 in
OT-1 CD8+ T cells activated by CNP versus controls. ***P < 0.0001. e, Cytotoxic activity of OT-1 CD8+ T cells towards B16 cells presenting MHC-I in the
context of OVA. At an effector to target (E:T) ratio of 20:1, tumour cell lysis by T cells expanded with CNP is three times the cytolytic activity of T cells
expanded using DYNA-EXO. *P < 0.05. All data are representative of three independent experiments. Error bars represent ± s.e.m. All gating of flow
cytometry data was performed on live CD8+ T cells.
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polymorphism (Fig. 5f, PBS group). One notable difference was also
the decrease in microvessel density observed in samples isolated
from the CNPs and DYNA-EXO+; this was in addition to a decrease
in tumour cell density (Fig. 5f). This decrease in tumour cell pro-
liferation was consistent with the lack of new vasculature needed
to supply the growing tumour mass.

Expansion of human CD8+ T cells using CNPs
Expansion of antigen-specific T cells in vitro and adoptive transfer
of these cells into patients could be an effective way to control
chronic infections and malignancies such as melanoma. To demon-
strate the efficacy of the CNP platform in expanding human T cells
for adoptive cell therapy, we adapted the platform to expand human
EBV-specific CD8+ T cells. Figure 6 compares the expansion of
EBV-specific CD8+ T cells stimulated under three different con-
ditions. CNPs were coated with either biotinylated EBV dimers
(CNP/EBV) or biotinylated OKT-3 (equivalent to human anti-
CD3) antibodies (CNP/OKT-3), while αCD28 antibodies were
added to provide co-stimulation. To compare this system with
stimulation by DCs under conventional conditions, DCs prepared

from human peripheral blood mononuclear cells were pulsed with
EBV peptide and maintained in IL-2 (100 U ml−1) during T-cell
stimulation. After a week of stimulation, cells were labelled with
anti-CD8 and EBV tetramer to identify the EBV-specific popu-
lation, together with a viability stain to monitor cell death. CNPs
coated with EBV peptide loaded in human leukocyte antigen
(HLA) were the most effective at expanding EBV-specific CD8+

T cells, increasing EBV-specific frequencies fourfold compared to
DC stimulation. In contrast, CNPs coated with high-affinity OKT-
3 antibodies increased EBV-specific frequencies twofold compared
to DCs, highlighting the utility of this system in increasing the
avidity of weak-binding peptide/MHC-TCR interactions.
Although the full adaptation of this system for clinical therapies is
beyond the scope of this work, these results demonstrate the
promise of the CNP platform in improving antigen-specific T-cell
expansion for human adoptive cell therapies.

Conclusions
Because the T-cell response depends on the signals it receives from
APCs, control over antigen presentation translates into control over
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Figure 5 | Adoptive immunotherapy with CNP-expanded T cells delays the growth of tumours in a murine melanoma model. Tumour sizes were measured
for two weeks in C57BL/6 mice inoculated with B16F10-OVA, and receiving OT-1 CD8+ T cells previously activated with CNPs or controls containing
1,000-fold higher exogenous IL-2 concentrations. Mice were killed after two weeks, and the tumours were weighed then assessed for the presence of
tumour-infiltrating lymphocytes. a, Delayed tumour growth in C57BL/6 mice previously inoculated with B16F10-OVA for ten days, and injected peritumorally
with 1 × 106 OT-1 CD8+ T cells per mouse. Tumour volumes were normalized to volumes measured at day 10 for each group. The results are mean values
from six mice per group. b, Measurement of tumour mass for each group. Mice were killed directly before tumour mass determination. c, Representative
tumour images from mice killed at day 14. d, Absolute number of activated T cells present in the tumour. Results are mean values from three tumours
per group. e, Absolute number of CD44+/CD62L− effector T cells present in the tumour. Results are mean values from three tumours per group.
f, Haematoxylin and eosin stain of tumour samples from mice killed at the end of the study showing relative increase in lymphocyte infiltration in the CNP
(black arrows) and DYNA-EXO+ (dashed arrows) groups, and the presence of microvessels in samples isolated from the untreated (phosphate-buffered
saline; PBS) and TET-EXO+ groups (orange arrows). Error bars represent ±s.e.m. throughout. *P < 0.05.
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T-cell stimulation and subsequent proliferation43. The composite
system described here provides several parameters with which to
engineer optimal antigen presentation using different T-cell anti-
gens (peptide/MHC complexes and antibodies). In addition to the
unique surface topology of CNTs mediating clustered antigen
presentation, paracrine delivery of cytokines can be enabled in the
system by coupling biodegradable polymeric nanoparticles encapsu-
lated with the cytokine of interest. In vivo, paracrine signalling is
pivotal to controlling lymphocyte response in the lymph node; in
peripheral niches, directional cytokine secretion has been observed
with antigen presentation23,24. Interestingly, the CNP antigen-
presentation system offers the potential for enhancing the prolifer-
ation and function of T cells to a level that would require at least
1,000-fold less soluble IL-2 under conventional culture conditions.
Finally, magnetic separation via magnetite co-encapsulated in the
particles enables easy isolation and enrichment of activated T cells
for adoptive transfer.

Ease of use, modularity and material availability are attractive
features for a general, modular, off-the-shelf therapeutic device.
This is in addition to the potential for large-scale manufacturing,
which can translate into significant cost reductions. Irrespective of
their scale or nature, all cell culture systems supply exogenous
bioactive factors by direct addition to the culture medium. Cost is
particularly an issue during prolonged culture and when there is a
requirement for complex cocktails to expand and differentiate
cells to a specific endpoint44,45. Carbon nanotubes and biodegrad-
able polymers are currently available on a large scale, predominantly
for use in the energy or pharmaceutical excipient sectors. Unlike live
cells, these engineered systems can be stored for extended periods of
time. Proteins attached to the surfaces of CNTs are stabilized against
denaturation33. The cytokine dose is lower because of the high local
concentrations and the encapsulated format, which is also more
stable in the case of free IL-2, because it is protected from physio-
logical media and released in a paracrine fashion near its target30.
Another factor that influences cost efficiency is the specificity.
Exogenously supplied factors can support the viability or growth
of undesired cell populations, which can then compete with the
culture of target cell types or influence their function. A relatively
unexplored strategy to improve the specificity of a cell culture is to
target stimulatory factors to cell types of interest using biodegrad-
able micro- or nanoparticles. This approach would enable spatial
and temporal control of local T-cell stimulation. In summary, the
composite aAPC system discussed here may offer greater stability
and thus a more economical way to generate T cells for use than
relying on live cells.

Materials and methods
Preparation of PLGA nanoparticles. A 50 µl volume of recombinant proleukin
human IL-2 (Novartis) at 1.2 mg ml−1 in PBS was added dropwise to a vortexing
solution of PLGA 50:50 (100 mg) with an inherent viscosity of 0.59 dl g−1 (Lactel
Polymers) and hydrophobic magnetite (18 mg) dissolved in 2 ml chloroform (Thermo
Scientific). The mixture was added dropwise to 3.2 ml of a vortexing solution of 5%
polyvinyl alcohol (PVA, Sigma-Aldrich) with MW,ave = 30–70 kDa and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine (DSPE)-PEG-biotin (4.14 mg/0.828 ml) (Avanti
Polar Lipid). The mixture was then sonicated three times for 10 s at 38% amplitude
(TEKMAR VCW 400 W). The solution was added dropwise to 100 ml of 0.2% PVA,
and left stirring for 3 h to evaporate the solvent. Particles were collected by
centrifugation at 12,000 r.p.m. for 15 min at 4 °C, then washed three times with
deionized water. The particles were lyophilized and stored at –20 °C.

T-cell stimulation studies. OT-1 mice were bred, maintained and screened in the
Malone Engineering Center at Yale University. Splenocytes were isolated from the
spleen of OT-1 mice (aged 6–8 weeks) after depletion of erythrocytes by hypotonic
lysis. CD8+ T cells were isolated using a CD8+ negative selection kit (StemCell).
CD8+ T cells were resuspended in cell media composed of RPMI 1640 supplemented
with FBS (10%), L-glutamine (1%), HEPES buffer (1%), non-essential amino acids,
2-ME (0.1%) and penicillin (2%), and stored at 4 °C before use. Equimolar amounts
(2.1 nM total) of biotinylated MHC-I (H-2Kb loaded with SIINFEKL peptides) and
αCD28 (BD Biosciences) were added to the NCNT suspension, and allowed to mix
for 1 h at room temperature. As a final step, PLGA nanoparticles (625 µg ml−1) were
added to the mixture and allowed to bind for 30 min. The mixture was then diluted
in cell media (1:5) and added to an equal volume of CD8+ T cells (5 × 105 cells ml−1)
in a 24-well plate. For control groups, streptavidin-coated Dynabeads (Invitrogen)
were added at a final concentration of 1 × 106 particles ml−1 using cell culture
conditions similar to those for CNPs. The cells were then incubated at 37 °C. After
three days of culture, samples were purified using magnetic separation to isolate
activated T cells, counted, and sized using a Multisizer 3 (Beckman Coulter) at 1:400
dilution, then processed for analysis. For long-term expansion studies, T cells
collected at day 3 were re-stimulated using the same quantity of soluble MHC-I and
αCD28, together with exogenous IL-2 or PLGA nanoparticles depending on the
groups. We chose to activate the cells using CNPs for the first three days to avoid
effects related to T-cell exhaustion (Supplementary Fig. 11). At days 5, 7 and 14,
T cells were purified using magnetic separation, counted and sized, then
re-stimulated using conditions similar to those for day 3.

In vivo melanoma study. C57BL/6 mice were accommodated in autoclaved
micro-isolator cages housed in a positive-pressure containment rack, and
maintained under the guidelines of an approved protocol from the Yale University
Institutional Animal Care and Use Committee. Mice were randomly assigned to
groups of six animals each. The xenografts of melanoma were developed by
subcutaneously implanting 5 × 106 B16F10-OVA cells in the right flank of the mice.
After 10 days of tumour inoculation, each mouse was treated with activated OT-1
CD8+ T cells by direct injection into the tumour. The tumour inhibition activity
was determined with the tumour volume, which was calculated using the equation
V =w2 × l/2, where w and l are the width and length of the tumour as measured by a
caliper. All animals were killed at the same time point for consistent comparison of
tumour sizes for all groups, or when a mouse met any of the following conditions:
(1) 15% loss in initial bodyweight; (2) tumour size ≥ 1.5 cm in any dimension;
(3) mouse becoming lethargic, sick or unable to feed; (4) mouse developing an
ulcerated tumour.
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Figure 6 | Expansion of human T cells using CNPs. Measurement of human T-cell EBV+/CD8+ expansion using CNP, compared with a gold standard control
(DCs), seven days after culture. a, Level of EBV+ CD8+ T-cell expansion measured by flow cytometry at day 7 in human CD8+ T cells previously incubated
with EBV pulsed DCs (100 U ml−1 soluble IL-2), CNP coated with OKT-3 and αCD28 antibodies (CNP/OKT-3), or CNP presenting EBV and αCD28
antibodies (CNP/EBV). The level of EBV+/CD8+ T-cell expansion was measured using EBV Tetramer (EBV Tet). b, Percentage of EBV+/CD8+ T cells
measured on day 7 post-stimulation. Error bars represent ±s.e.m. *P < 0.05, ***P < 0.0001.
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Human T-cell expansion study. CD8+ T cells were isolated from human peripheral
blood mononuclear cells (PBMCs) or leukopak of healthy HLA-A2+ individuals via
negative immunoselection (Miltenyi Biotech) according to the manufacturer’s
instructions. Equimolar amounts of either biotinylated HLA-A2 dimer
(BD Biosciences) loaded with EBV peptide or biotinylated human anti-CD3
(OKT3, eBiosciences) and αCD28 (Biolegend) were added to the NCNT suspension,
and allowed to mix for 1 h at room temperature. IL-2 encapsulating PLGA
nanoparticles (31.25 µg ml−1 final) were added to the mixture and allowed to bind
for 30 min at room temperature. CNP (1.25 µg ml−1) was added to 1 × 106 CD8+

T cells per plate in a 96-well plate.

Received 9 December 2012; accepted 30 June 2014;
published online 3 August 2014

References
1. Waldmann, T. A. Immunotherapy: past, present and future. Nature Med. 9,

269–277 (2003).
2. Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the

treatment of patients with cancer. Nature Rev. Cancer 3, 666–675 (2003).
3. Zemon, H. An artificial solution for adoptive immunotherapy. Trends

Biotechnol. 21, 418–420 (2003).
4. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions

in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science
Transl. Med. 5, 177ra38 (2013).

5. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell
sarcoma and melanoma using genetically engineered lymphocytes reactive with
NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

6. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute
lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

7. Murphy, K., Travers, P. & Walport, M. Janeway’s Immunobiology
(Garland Science, 2008).

8. Kim, J. V., Latouche, J.-B., Rivière, I. & Sadelain, M. The ABCs of artificial
antigen presentation. Nature Biotechnol. 22, 403–410 (2004).

9. Steenblock, E. R., Wrzesinski, S. H., Flavell, R. A. & Fahmy, T. M. Antigen
presentation on artificial acellular substrates: modular systems for flexible,
adaptable immunotherapy. Expert Opin. Biol. Ther. 9, 451–464 (2009).

10. Kropshofer, H. et al. Tetraspan microdomains distinct from lipid rafts enrich
select peptide-MHC class II complexes. Nature Immunol. 3, 61–68 (2002).

11. Fooksman, D. R., Grönvall, G. K., Tang, Q. & Edidin, M. Clustering class I MHC
modulates sensitivity of T cell recognition. J. Immunol. 176, 6673–6680 (2006).

12. Andersen, P. S., Menné, C., Mariuzza, R. A., Geisler, C. & Karjalainen, K. A
response calculus for immobilized T cell receptor ligands. J. Biol. Chem. 276,
49125–49132 (2001).

13. González, P. A. et al. T cell receptor binding kinetics required for T cell activation
depend on the density of cognate ligand on the antigen-presenting cell. Proc.
Natl Acad. Sci. USA 102, 4824–4829 (2005).

14. Grakoui, A. et al. The immunological synapse: a molecular machine controlling
T cell activation. Science 285, 221–227 (1999).

15. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A.
Three-dimensional segregation of supramolecular activation clusters in
T cells. Nature 395, 82–86 (1998).

16. Cemerski, S. et al. The stimulatory potency of T cell antigens is influenced by the
formation of the immunological synapse. Immunity 26, 345–355 (2007).

17. Li, Q.-J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck
accumulation at the immunological synapse. Nature Immunol. 5, 791–799 (2004).

18. Oelke, M. et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells
by HLA-Ig-coated artificial antigen-presenting cells.NatureMed. 9, 619–624 (2003).

19. Prakken, B. et al. Artificial antigen-presenting cells as a tool to exploit the
immune ’synapse’. Nature Med. 6, 1406–1410 (2000).

20. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free
vaccine: dendritic cell derived exosomes. Nature Med. 4, 594–600 (1998).

21. Steenblock, E. R. & Fahmy, T. M. A comprehensive platform for ex vivo T-cell
expansion based on biodegradable polymeric artificial antigen-presenting cells.
Mol. Ther. 16, 765–772 (2008).

22. Oosten, L. E. M. et al. Artificial antigen-presenting constructs efficiently
stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.
Blood 104, 224–226 (2004).

23. Sabatos, C. A. et al. A synaptic basis for paracrine interleukin-2 signaling during
homotypic T cell interaction. Immunity 29, 238–248 (2008).

24. Huse, M., Quann, E. J. & Davis, M. M. Shouts, whispers and the kiss of death:
directional secretion in T cells. Nature Immunol. 9, 1105–1111 (2008).

25. Ye, Q. et al. Engineered artificial antigen presenting cells facilitate direct and
efficient expansion of tumor infiltrating lymphocytes. J. Transl. Med. 9, 131 (2011).

26. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26,
453–479 (2008).

27. Fadel, T. R. & Fahmy, T. M. Immunotherapy applications of carbon nanotubes:
from design to safe applications. Trends Biotechnol. 32, 198–209 (2014).

28. Zanello, L. P., Zhao, B., Hu, H. & Haddon, R. C. Bone cell proliferation on
carbon nanotubes. Nano Lett. 6, 562–567 (2006).

29. Nayak, T. R. et al. Thin films of functionalized multiwalled carbon nanotubes as
suitable scaffold materials for stem cells proliferation and bone formation. ACS
Nano 4, 7717–7725 (2010).

30. Steenblock, E. R., Fadel, T., Labowsky, M., Pober, J. S. & Fahmy, T. M. An artificial
antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and
direction of the T cell response. J. Biol. Chem. 286, 34883–34892 (2011).

31. Chen, Y. et al. Low-defect, purified, narrowly (n,m)-dispersed single-walled carbon
nanotubes grown from cobalt-incorporatedMCM-41.ACS Nano 1, 327–336 (2007).

32. Fadel, T. R. et al. Enhanced cellular activation with single walled carbon
nanotube bundles presenting antibody stimuli. Nano Lett. 8, 2070–2076 (2008).

33. Fadel, T. R. et al. Adsorption of multimeric T cell antigens on carbon nanotubes:
effect on protein structure and antigen-specific T cell stimulation. Small 9,
666–672 (2013).

34. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive
selection. Cell 76, 17–27 (1994).

35. Fadel, T. R. et al. Clustering of stimuli on single-walled carbon nanotube bundles
enhances cellular activation. Langmuir 26, 5645–5654 (2010).

36. Park, J. et al. Enhancement of surface ligand display on PLGA nanoparticles with
amphiphilic ligand conjugates. J. Control. Rel. 156, 109–115 (2011).

37. Fahmy, T. M., Samstein, R. M., Harness, C. C. & Mark Saltzman, W. Surface
modification of biodegradable polyesters with fatty acid conjugates for improved
drug targeting. Biomaterials 26, 5727–5736 (2005).

38. Ragheb, R. R. T. et al. Induced clustered nanoconfinement of superparamagnetic
iron oxide in biodegradable nanoparticles enhances transverse relaxivity for
targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013).

39. Cheng, L. E., Ohlén, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling
through the IL-2 receptor in CD8+ T cells regulated by antigen recognition
results in preferential proliferation and expansion of responding CD8+ T
cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA 99,
3001–3006 (2002).

40. Labowsky, M. & Fahmy, T. M. Diffusive transfer between two intensely interacting
cells with limited surface kinetics. Chem. Eng. Sci. 74, 114–123 (2012).

41. Janas, M. L., Groves, P., Kienzle, N. & Kelso, A. IL-2 regulates perforin and
granzyme gene expression in CD8+ T cells independently of its effects on
survival and proliferation. J. Immunol. 175, 8003–8010 (2005).

42. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive
strategies that are mediated by tumor cells. Annu. Rev. Immunol.
25, 267–296 (2007).

43. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy.
Nature Rev. Immunol. 2, 227–238 (2002).

44. Suter, D. M. & Krause, K-H. Neural commitment of embryonic stem cells:
molecules, pathways and potential for cell therapy. J. Pathol.
215, 355–368 (2008).

45. McIntosh, K. et al. The immunogenicity of human adipose-derived cells:
temporal changes in vitro. Stem Cells 24, 1246–1253 (2006).

Acknowledgements
This work was supported in part by a National Science Foundation Career Award
(0747577) to T.M.F. and in part by a National Institutes of Health Autoimmunity Center of
Excellence Pilot Award (U19 AI056363, to T.M.F. and K.H.) and a Yale Specialized
Programs of Research Excellence (SPORE) Investigator Pilot Award (to T.M.F.) and in part
by the Yale SPORE in Skin Cancer (grant no. 1 P50 CA121974). The authors thank
J. Alderman and R. Flavell for helpful critique, andM. Sznol, R. Tigelaar andM. Bosenberg
(Yale Cancer Center), as well as P. De Sousa (University of Edinburgh), for technical
comments regarding adoptive therapy. The authors also thank P. Van Tassel for technical
advice regarding CNT preparation.

Author contributions
T.R.F. and T.M.F. designed all of the experiments for this study. R.R synthesized the
magnetite and fabricated the polymer nanoparticles. N.L. synthesized the carbon
nanotubes. S.J. synthesized the biotinylatedMHC-I. T.R.F., L.D.P. and G.L.H. characterized
the carbon nanotubes. T.R.F. and R.R. characterized the particles and the CNP system. R.R.
characterized the magnetic properties of the PLGA nanoparticles and CNPs. T.R.F.
performed inverted, fluorescence and FRET imaging. T.R.F. performed in vitro
characterization experiments and FACS analyses. T.R.F., F.S. and E.H. performed the
studies on T-cell cytotoxicity. T.R.F., F.S. and D.K. characterized the tumour-infiltrating
lymphocytes. F.S., N.V., and J.G. performed the human T cell expansion experiments.
T.R.F. and D.K. performed the in vivo experiments. T.M.F. conceived the formulations.
T.R.F. wrote the manuscript. T.M.F., R.R., D.K., F.S., E.H., L.D.P., and K.C.H. edited
the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Correspondence and
requests for materials should be addressed to T.M.F.

Competing financial interests
The authors declare no competing financial interests.

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2014.154 ARTICLES

NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 9

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nnano.2014.154
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nnano.2014.154
http://www.nature.com/naturenanotechnology

	A carbon nanotube–polymer composite for T-cell therapy
	Synthesis and characterization of CNPs
	In vitro stimulation of CD8+ T-cell effectors by CNPs
	In vivo anti-tumour activity of CNP-activated T cells
	Expansion of human CD8+ T cells using CNPs
	Conclusions
	Materials and methods
	Preparation of PLGA nanoparticles
	T-cell stimulation studies
	In vivo melanoma study
	Human T-cell expansion study

	Figure 1  Design of CNPs.
	Figure 2  Characterization of CNPs.
	Figure 3  CNPs enhance the long-term expansion of CD8+ T cells.
	Figure 4  Effect of CNPs on T-cell phenotype and cytolytic activity.
	Figure 5  Adoptive immunotherapy with CNP-expanded T cells delays the growth of tumours in a murine melanoma model.
	Figure 6  Expansion of human T cells using CNPs.
	Table 1  Physiochemical properties of two main components of CNP.
	Table 2  Effect of magnetite loading on magnetic separation, IL-2 release and T-cell stimulation.
	Table 3  Effect of CNP on T-cell proliferation and cell size as a function of time.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 450
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 450
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    35.29000
    35.29000
    36.28000
    36.28000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50000
    8.50000
    8.50000
    8.50000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (NPG PRINT PDF Job Options. 4th September 2006. PDF 1.3 Compatibility. Adds Trim and Bleed boxes top Nature pages where none exist.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [665.858 854.929]
>> setpagedevice


